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Abstract
Similarity reductions of the coupled nonlinear Schrödinger equation and
an integrable version of the coupled Maxwell–Bloch system are obtained
by applying non-translational symmetries. The reduced system of coupled
ordinary differential equations are solved in terms of Painlevé transcendents,
leading to new exact self-similar solutions for these integrable equations.

PACS numbers: 02.30.Ik, 02.30.Hq, 02.30.Gp

1. Introduction

Completely integrable systems play an important role in many physical applications including
water waves, plasma physics, field theory and nonlinear optics. An important feature of
many integrable evolution equations is that a large class of their exact solutions, particularly
the solitons, can be derived by applying the method of inverse scattering transform (IST)
(see [1, 2] for a review). Another significant characteristic shared by many (perhaps all)
integrable partial differential equations (PDEs) is that their dimensional reductions to ordinary
differential equations (ODEs) have solutions with no movable critical points in appropriate
variables. This remarkable property is known as the Painlevé property and the corresponding
ODEs are said to be of ‘Painlevé type’. The relationship between integrability and Painlevé
property motivated Ablowitz, Ramani and Segur [3] to make the conjecture (hereafter referred
to as the ARS conjecture) that a nonlinear evolution equation is solvable by IST only if every
ODE obtained by exact similarity reduction is of Painlevé type, perhaps after a transformation
of variables. There is considerable evidence that the ARS conjecture is true despite the absence
of a complete proof at the present time. Nonetheless, this conjecture provides a preliminary test
that is useful to determine whether a PDE is integrable. Conversely, failure of the conjecture
in a certain case would strongly suggest that the given PDE is not solvable via IST. Besides
playing an important role in the identification of integrable PDEs, the dimensional reduction of
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PDEs also provides an effective method of obtaining special classes of exact solutions. Indeed,
a large number of self-similar solutions have been found for equations that are solvable by IST
by applying the dimensional reduction technique. Typically, these solutions are expressible
in terms of elliptic functions, Painlevé transcendents or their degenerations (see, e.g. [2] and
references therein). The similarity reduction method can even be applied to obtain special
solutions of non-integrable equations.

In this paper, we study the dimensional reductions of certain completely integrable
equations which have important applications in nonlinear optics. The equations considered
here are the two-component generalizations of the Maxwell–Bloch (MB) and the nonlinear
Schrödinger equations. In the text, they are referred to as the coupled Maxwell–Bloch (CMB)
equations describing the propagation of ultra-short laser pulses in a resonant medium of three-
level atoms, and the coupled nonlinear Schrödinger (CNLS) equations modelling optical
pulses in a birefringent optical fibre supporting two linearly polarized propagation modes.
The travelling wave and N-soliton solutions obtained by IST and Bäcklund transformations
have already been discussed in the literature for both the CMB [4, 5] and the CNLS [6–8]
equations. In this work, we construct new self-similar solutions of the CMB and CNLS
equations obtained by imposing non-translational symmetries on the original PDEs. It is
possible that these new solutions may be of interest in future applications such as optical
systems with memory [9]. Moreover, as the original MB and NLS equations, the obtained
self-similar solutions of the reduced CMB and CNLS equations are also found to be Painlevé
type and are in fact given in terms of the Painlevé transcendents. But in spite of the similarity
in the analysis of the Lie-point symmetries, between the coupled systems and the scalar MB
and NLS equations, the solution process is more involved in the coupled case because of the
increased number of degrees of freedom.

The paper has two main sections. In section 2, we consider the MB and the CMB
equations. After introducing the requisite mathematical framework for these equations, we
discuss their scaling reductions. The MB equations are treated first as a special case of the
CMB equations. We show that the reduced system of ODEs can be interpreted as a Hamiltonian
dynamical system with a time-dependent Hamiltonian. Then these reduced ODEs for both the
MB and CMB equations are explicitly solved in terms of the third Painlevé transcendent PIII.
The similarity reductions of the NLS and CNLS equations are discussed next in section 3.
These equations admit two types of non-translational symmetries, namely Galilean boost
and scaling. For both the NLS and CNLS equations, the invariant solutions are found in
terms of the second Painlevé transcendent PII in the case of Galilean boost, whereas for the
scaling symmetry the corresponding invariant solutions are described by the fourth Painlevé
transcendent PIV.

2. The coupled Maxwell–Bloch equations

The Maxwell–Bloch (MB) equations describe the propagation of ultra-short optical pulses
in a coherent medium of two-level atoms and arise in the study of self-induced transparency
[10]. In the lossless case, the MB equations are integrable via the IST method even when
the inhomogeneous broadening of the medium is taken into account [11]. In recent years,
there also have been considerable theoretical and experimental interests in the propagation of
a pair of matched pulses through an absorbing medium of three-level atoms [12–14]. These
studies have applications in quantum coherence and interference phenomena (generated by
two photon transitions) such as electromagnetically induced transparency [15], lasing with
inversion [16] and production of high refractive index materials [17].
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2.1. Mathematical background

In the slowly varying amplitude and lossless approximations, the spatio-temporal dynamics of
a pulse pair in a three-level resonant medium is given by [12, 13, 5] the Schrödinger equations

∂a1

∂t
= i�1a3

∂a2

∂t
= i�2a3

∂a3

∂t
= i(�1a1 + �2a2) (2.1a)

and the Maxwell equations

∂�j

∂z
+

1

v

∂�j

∂t
= −2iµjaja3 j = 1, 2. (2.1b)

In the above equations, ak is the probability amplitude of the atomic level |k〉, k = 1, 2, 3,
and �j, j = 1, 2 denote the (normalized) complex electromagnetic field amplitudes also
called the Rabi frequencies corresponding to |j 〉 − |3〉 transitions. Here and throughout the
rest of this paper, overbar indicates complex conjugate. Furthermore, only one-dimensional
pulse propagation is considered in equation (2.1b) where both pulses are travelling along the
z-direction with velocity v, and where µj , j = 1, 2 are the propagation coefficients assumed
to be equal (i.e., µ1 = µ2 = µ �= 0). For three-level systems, there are only two known
integrable cases which correspond to the � and V configurations of the atomic energy levels.
In above, |3〉 is the ground state for the V system whereas for the � system |3〉 corresponds to
the highest excited state.

It is useful to introduce pulse-local coordinates: τ = z, x = t − z/v, and to represent the
Schrödinger–Maxwell equations (2.1a), (2.1b) in the form

Uτ = [ρ, J ] ρx = [U, ρ] (2.2a)

where subscripts denote partial derivatives, and the 3 × 3 matrices U, ρ and J are defined as

U ≡

 0 0 u1

0 0 u2

−u1 −u2 0


 uj = i�j j = 1, 2

(2.2b)
J ≡ diag(−µ,−µ,µ) [ρ]ij ≡ aiaj .

ρ is the probability density matrix and has vanishing determinant. The second equation in
(2.2a) for the matrix elements of ρ is called the Bloch equation. We refer to equations (2.2a)
and (2.2b) as the coupled Maxwell–Bloch (CMB) equations. When a1 = u1 = 0 (or
a2 = u2 = 0) in (2.2b), the CMB equations reduce to the MB equations in a medium of
two-level atoms.

The system of equations (2.2a) can be expressed as the integrability condition of an
associated linear system (Lax pair)

�x = (U + λJ )� �τ = ρ

λ
�

where λ is the spectral parameter. The Lax-pair and the zero-curvature representation were
exploited to obtain special classes of solutions of the CMB equation via IST and Bäcklund
transformation techniques (see e.g. [4, 5] and references therein). A field-theoretic description
of the CMB equation in terms of symmetric spaces SU(3)/U(2) was given in [18] where the
hidden symmetries and conservation laws were also discussed. We remark that the MB and the
CMB equations can also be obtained as dimensional reductions of the self-dual Yang–Mills
equation with gauge groups SU(2) and SU(3), respectively. (Reductions of the Lax pair for
the self-dual Yang–Mills equations giving rise to the above linear system for � were discussed,
for example, in [19].) In this paper, our aim is to study the similarity reductions of the CMB
equations and to derive its self-similar solutions that are distinct from the travelling wave
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or breather-type solutions obtained earlier [5]. Furthermore, we wish to investigate whether
these self-similar solutions possess the Painlevé property which is a characteristic feature of
integrable equations. We first consider the similarity reduction of the MB system which is a
special case of the CMB equation, and treat the more general case next.

2.2. Reduction of the Maxwell–Bloch system

If we set a1 = �1 = 0 (or a2 = �2 = 0) in equations (2.1a), (2.1b), then this leads
to the Schrödinger–Maxwell equations for a two-level medium. As mentioned above, the
corresponding CMB equations then reduce to the MB equations. The resulting equations (2.2a)
and (2.2b) (with a2 = u2 = 0) can be expressed in the form

Û τ = [ρ̂, Ĵ ] ρ̂x = [Û, ρ̂]
(2.3)

Û ≡
(

0 u

−ū 0

)
Ĵ ≡ diag(−µ,µ) [ρ̂]ij ≡ aiaj i, j = 1, 3

and describe the propagation of a single pulse in a two-level resonant medium in the absence
of inhomogeneous broadening (sharp line limit). Here we point out that equations (2.3) differ
slightly from the usual form of MB equations which appear in the literature (see e.g. [11])
where the trace-free part of ρ̂ namely, ρ̂0 ≡ ρ̂ − Tr(ρ̂)/2 is used instead of ρ̂ itself. However
since the trace satisfies Tr(ρ̂)x = 0 (which leads to the conservation of probability density
with suitable initial conditions), it follows that (2.3) is equivalent to the MB equations with ρ̂

replaced by ρ̂0. It is also worth noting that if the field u(x, 0) is real (or has constant phase),
then u(x, τ ) stays real (or its phase remains constant). In this case, equation (2.3) is equivalent
to the sine-Gordon equations, which has similarity reductions to the third Painlevé equation
(see e.g. [2]).

A class of self-similar solutions of the MB equations arise from the investigation of Lie-
point symmetries which leave equation (2.3) invariant. Besides the translational symmetry
which leads to travelling wave solutions, the MB equations admit a one-parameter subgroup
of scaling symmetry: x → ε−1x, τ → ετ, Û → εÛ and ρ̂ → ρ̂. The solutions invariant
under the scaling symmetry have the form

Û(x, τ ) = Q̂(ξ)/x ρ̂(x, τ ) = ρ̂(ξ) ξ = √
xτ.

Substituting the above form of Û and ρ̂ into equation (2.3) yields the following set of coupled
ODEs for the off-diagonal matrix elements q, q̄ of Q̂ and ρ̂ij

q ′ = 4ξµρ̂13 ξρ̂ ′
13 = 2q(ρ̂33 − ρ̂11)

(2.4)
ξρ̂ ′

11 = −ξρ̂ ′
33 = 2(qρ̂31 + q̄ρ̂13) ρ̂31 ≡ ρ̂13

where prime indicates derivative with respect to the argument. The system of ODEs (2.4)
admit the first integrals

ρ̂11 + ρ̂33 = Tr(ρ̂) = a qρ̂31 − q̄ρ̂13 = Tr(Q̂ρ̂) = b (2.5)

where a and b are constants and a �= 0. Making use of the first integrals and the fact that
det ρ̂ = ρ̂11ρ̂33 − ρ̂13ρ̂31 = 0, it is possible to reduce (2.4) to a system of two first-order ODEs

y ′ − 4µ +
y

ξ
= 2y2(ρ̂11 − ρ̂33) where y = q

ρ̂13ξ

(ρ̂11 − ρ̂33)
′ = 2y[a2 − (ρ̂11 − ρ̂33)

2] − 4b

ξ
.
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If we eliminate the quantity ρ̂11 − ρ̂33 from the equations immediately above and make the
change of variables

W = λy Z = kξ such that λk = a and kλ−1 = 2µ

in the resulting second-order ODE for y, then we obtain the third Painlevé equation PIII for
W(Z) [20] (p 335, equation XIII)

d2W

dZ2
= 1

W

(
dW

dZ

)2

− 1

Z

(
dW

dZ

)
+

αW 2 + β

Z
+ γW 3 +

δ

W
(2.6)

with the choice of parameters α = −8b/a and β = γ = −δ = 4. Note that in the present
context W(z) represents the solution of a one-parameter family of PIII transcendents since
three of the four parameters are fixed. (In general, only two of the four parameters in PIII are
free, the remaining two parameters can be fixed by suitable re-scalings of the dependent and
independent variables.) Finally, working backward from (2.6) it is straightforward to show
that the scale-invariant solutions of the MB equations given by equation (2.4) can be expressed
in terms of W(Z) and W ′(Z). We omit the details.

It is also possible to derive the PIII reduction of the MB equations by a slightly different
route which actually leads to the fifth Painlevé equation PV with special parameter values.
This special PV equation can be reduced to PIII by a known transformation [21]. We outline
this approach here since it is also relevant to the similarity reduction of the CMB equations
to be discussed next. If we use the variable ĝ ≡ ρ̂11 instead of y, then by differentiating the
equation for ρ̂11 in (2.4) we get

ĝ′′ =
(

ĝ′2

2
− 2b2

ξ2

) (
1

ĝ
− 1

a − ĝ

)
− ĝ′

ξ
+ 16µĝ(a − ĝ).

To derive the above equation for ĝ, we used the remaining equations from (2.4), the first
integrals from (2.5) and the relation ρ̂11ρ̂33 = ρ̂13ρ̂31 (i.e. det ρ̂ = 0). Next, by introducing
the variable ŷ = (ĝ − a)/ĝ we can further transform the above ODE to

ŷ′′ =
(

1

2ŷ
+

1

ŷ − 1

)
ŷ′2 − ŷ′

ξ
+

4(ŷ − 1)2

ξ2

(
αŷ +

β

y

)
+ 2γ ŷ (2.7)

where α = b2/2a2 = −β and γ = −8µa. It is equation (2.7) that can either be transformed
to a special PV equation with two free parameters or to a special PIII equation with one
free parameter, thereby inducing a transformation between the special cases of PIII and PV
themselves. We defer the details of these transformations to the next subsection where they
will be discussed in a more general context.

2.3. Reduction of the coupled Maxwell–Bloch equations

As the MB equations, the CMB equations also admit ODE reductions under the scaling
symmetry. The scaling-invariant solutions are obtained from (2.2a) by expressing the 3 × 3
matrices in (2.2b) in the form

U(x, τ ) = Q(ξ)/x ρ(x, τ ) = ρ(ξ) ξ = √
xτ

where the matrices Q(ξ) and ρ(ξ) satisfy

ξρ ′ = 2[Q,ρ] Q′ = 2ξ [ρ, J ]. (2.8)

Alternatively, one can directly consider the scaling reductions of the Schrödinger–Maxwell
equations (2.1a), (2.1b) by expressing the electromagnetic fields and the probability amplitudes
as

i�j(z, t) = uj (x, τ ) = qj (ξ)/x j = 1, 2

ak(z, t) = ak(x, τ ) = ak(ξ) k = 1, 2, 3.
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The reduced system of ODEs are simpler to express in terms of the variables ak rather than the
Bloch matrix elements ρij = aiaj (which are quadratic in the ak). The ODEs for the variables
qj (ξ), j = 1, 2 and ak(ξ), k = 1, 2, 3 are given by

q ′
j = 4ξµaja3 ξa′

j = 2qja3 j = 1, 2 ξa′
3 = −2(q1a1 + q2a2). (2.9)

Equations (2.9) together with the complex conjugate equations imply the matrix ODE system
(2.8). The reduced ODEs admit the following first integrals

3∑
k=1

|ak|2 = Tr(ρ) = A

2∑
j=1

(a3qjaj − c.c.) = Tr(Qρ) = B

(2.10)
q2a1 − q1a2 = C (|C|2 = Tr(ρQ2 − AQ2/2))

where A,B,C are constants and c.c. denotes complex conjugate. Note that unlike the reduced
MB equations (2.4), the reduced CMB equations (2.9) admit an additional first integral C
(C ≡ 0 for the MB equations).

It is interesting to note that equations (2.9) and their complex conjugates can be recast
as a Hamiltonian dynamical system on a ten-dimensional (real) phase space with variables
qj , j = 1, 2 and bk ≡ ξak, k = 1, 2, 3 together with their complex conjugates. When
expressed in terms of the new variables bk, equations (2.9) become

ξq ′
j = 4µbjb3 ξb′

j = bj + 2qjb3 j = 1, 2 ξb′
3 = b3 − 2(q1b1 + q2b2).

(2.9′)

Equations (2.9′) represent a Hamiltonian system prescribed by the canonical Poisson bracket
relations and a time (ξ )-dependent Hamiltonian function H as follows:

q ′
j = {qj,H } j = 1, 2 b′

k = {bk,H } k = 1, 2, 3

H = 1

ξ


 3∑

k=1

|bk|2 + 2
2∑

j=1

(b3qjbj − c.c.)


 = ξ Tr(ρ + 2Qρ).

The associated Poisson structure is defined by the fundamental Poisson brackets

{qi, qj } = −2µδij i, j = 1, 2 {ak, al} = δkl k, l = 1, 2, 3

where δij is the usual Kronecker delta, and all other fundamental Poisson brackets vanish.
Furthermore, the first integrals in equation (2.10) are in involution with respect to the Poisson
structure defined above.

The next task is to solve the system (2.9) and to determine whether the general solution
has the Painlevé property. The similarity reductions of the CMB equations are expected to
be of Painlevé type because of the ARS conjecture. However to our knowledge, the Painlevé
property of these ODEs has not yet been studied. In what follows, we show that there exists
a suitable combination of variables (not necessarily unique) that satisfies the third Painlevé
equation PIII in general position. Secondly, the CMB variables in (2.9) can be expressed via
the PIII transcendent either by quadratures or through the solution of a Riccati equation.

It is useful for subsequent calculations to introduce the variables

g ≡ |a1|2 + |a2|2 = A − |a3|2 and f ≡ a3(a1q1 + a2q2).

Note that the first integral B in equation (2.10) can be written as B = f − f̄ . Starting from
equation (2.9) and making use of the first integrals (2.10), a straightforward computation yields

ξg′ = 4f − 2B ξf ′ = 4µξ2g(A − g) + 2h(A − 2g) + 2|C|2
(2.12)

where h ≡ |q1|2 + |q2|2 = f (f − B)

g(A − g)
+

|C|2
g

.
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Eliminating f (ξ) from the two first-order equations (2.12), we obtain

g′′ =
(

g′2

2
− 2B2

ξ2

) (
1

g
− 1

A − g

)
− g′

ξ
+

8|C|2
ξ2

(
A − g

g

)
+ 16µg(A − g)

which is rational in g(ξ) and g′(ξ), and is of Painlevé type. Indeed, by the rational substitution
y = (g − A)/g, the above ODE for g(ξ) can be transformed into the following intermediate
form

y ′′ =
(

1

2y
+

1

y − 1

)
y ′2 − y ′

ξ
+

4(y − 1)2

ξ2

(
αy +

β

y

)
+ 2γy (2.13)

where α = (B2 − 4A|C|2)/2A2, β = −B2/2A2 and γ = −8µA. Here we note that when
C = 0, equation (2.13) reduces to equation (2.7) of the previous subsection. This corresponds
to the special cases of the CMB equations when either (a) q1/q2 = a1/a2, qj �= 0, aj �= 0, j =
1, 2 or (b) qj = aj = 0, j = 1 or 2. The latter case (b) is simply the degeneration of the
CMB equations to the MB equations.

Changing the variables to Z = ξ2/2,W(Z) = y(ξ) in equation (2.13), leads to a special
case of the fifth Painlevé equation PV [20] (p 341, equation XXXIX, δ = 0)

d2W

dZ2
=

(
1

2W
+

1

W − 1

) (
dW

dZ

)2

− 1

Z

dW

dZ
+

(W − 1)2

Z2

(
αW +

β

W

)
+

γW

Z
(2.14)

with the same parameters α, β, γ as defined above. There also exists a correspondence between
y(ξ) in equation (2.13) and solutions of PIII in general position (i.e. with two free parameters).
This transformation [21] between solutions of PIII and the special case of PV with δ = 0 is
given as follows. Define the function Ŵ (ξ) via the solution y(ξ) of equation (2.13) by

Ŵ = − y ′

2y
+

c1y

ξ
+

c2

yξ
− c1 + c2

ξ

where c2
1 = 2α and c2

2 = −2β are given in terms of the parameters α, β of equation (2.13).
Then Ŵ (ξ) is a solution of PIII and satisfies equation (2.6) with parameters α̂, β̂, γ̂ , δ̂ where
α̂ = 2(c1 + c2), β̂ = 2(c1 − c2 − 1)/γ, γ̂ = 1 and δ̂ = −γ 2.

Thus we have shown how to express y(ξ) or equivalently, g(ξ) = |a1|2 + |a2|2 in terms of
PV (or PIII) transcendent. In fact, it turns out that the solution of the full system of ODEs (2.9)
can be obtained in terms of this Painlevé transcendent and its derivative, as outlined below.
Given g(ξ) we solve for f (ξ) from the first equation in (2.12). Next, from (2.9) we obtain

Y ′
j = 2(g − A)Y 2

j − 2fYj

g − A
+ 4ξµ

where Yj = qj

aja3
j = 1, 2 and

a′
3

a3
= 2f

g − A
.

The last equation above can be solved for a3. Then from two independent solutions Y1 and Y2

of the Riccati equation, the CMB variables qj and aj , j = 1, 2 can be obtained in quadratures
as follows:

q ′
j

qj

= 4ξµ

Yj

aj = qj

a3Yj

j = 1, 2.

The remaining variables qj , aj and a3 can be obtained in a similar fashion, starting with g(ξ)

and f̄ (ξ) = f (ξ) − B. Thus all the CMB variables in (2.9) can be obtained in terms of g and
f either by quadratures or by solving Riccati equations.

We conclude this section by remarking that the similarity reductions of the Maxwell–
Bloch equations for two- and three-level atomic media can be extended to the multi-level case
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of n-CMB equation describing n electromagnetic fields propagating in a resonant medium
with n+ 1 energy states for n > 2. This can be achieved in a relatively straightforward manner
by appropriate generalizations of the equations (2.8)–(2.10). Besides Tr(ρ) and Tr(Qρ), there
are n(n − 1)/2 additional first integrals given by Cij = qiaj − qjai, i �= j, i, j = 1, 2, . . . , n.
By introducing the variable g̃(ξ) ≡ |a1|2 + |a2|2 + · · · + |an|2 and proceeding in the same way
as we did for the CMB reduction, the scaling-invariant solutions of the n-CMB equations are
also obtained via the general PIII transcendent. We do not go into further details of the n-CMB
case in this paper.

3. The coupled nonlinear Schrödinger equations

In this section we study the similarity reductions of a system of two coupled NLS (CNLS)
equations in 1 + 1 dimensions. This system is known to be completely integrable in the sense
that it admits soliton solutions and the initial value problem can be solved via the IST method
[6]. The CNLS equations also possess an infinite set of conserved quantities [7], and pass the
Painlevé PDE test [8]. Thus, it is reasonable to expect that in accord with the ARS conjecture,
the ODEs obtained by the dimensional reductions of the CNLS equations are of Painlevé type.
Indeed in [22, 23], a set of Painlevé-type ODEs regarded as a coupled system of Painlevé II
equations was derived by reducing the CNLS equations by the Galilean boost symmetry. In
this section we derive a more general set of coupled ODEs and show that their solutions
are given directly via the second Painlevé transcendent. We also present another dimensional
reduction of the CNLS equations under the scaling symmetry and obtain the invariant solutions
in terms of the fourth Painlevé transcendent.

3.1. Reductions of NLS equations

Here we review briefly the known similarity reductions of the NLS equation

iut = uxx

2
+ s|u|2u (3.1)

for the complex function u(x, t). We consider both focusing (s = 1) and defocussing (s = −1)

cases. Analysis of the classical Lie-point symmetries of equation (3.1) leads to three types
of similarity reductions (see e.g. [24]) namely, translation, scaling and Galilean boost. The
translational symmetry leads to the well-known travelling wave solutions. In this paper, we
discuss the non-translational symmetries only. There are two cases that we consider.

Case 1. Galilean boost [24]: in this case the form of the field u(x, t) is given by

u(x, t) = r(z) exp(iφ(z) − iαt(x − αt2/3)) z = x − αt2/2 (3.2)

where α > 0 is a constant parameter. Substituting (3.2) into equation (3.1) and separating real
and imaginary parts, we find that r(z) and φ(z) satisfy the system of equations

rφ′′ + 2r ′φ′ = 0 (3.3a)

r ′′ − rφ′2 + 2sr3 − 2αzr = 0. (3.3b)

Equation (3.3a) may be integrated once to obtain φ′ = C/r2, where C is the constant of
integration. Substituting the result into (3.3b) leads to a non-autonomous ODE for r(z)

r ′′ = C2r−3 − 2sr3 + 2αzr. (3.4)

If C = 0, equation (3.4) can simply be rescaled to

d2W

dZ2
= 2W 3 + ZW where W = (−s)1/2(2α)−1/3r Z = (2α)1/3z (3.5)
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which is a special case of the second Painlevé equation PII [20] (p 334, equation IX with
γ = 0). This special case of PII has also been obtained as the Galilean boost reduction of the
NLS equation with external potential [25].

When C �= 0, equation (3.4) is still solvable in terms of a Painlevé-type ODE. By an
appropriate change of variables in equation (3.4), it is possible to derive the following equation

d2W

dZ2
= 1

2W

(
dW

dZ

)2

+ 4aW 2 − ZW − 1

2W
(3.6)

where

W = (4α)1/3

2iC
r2 Z = −(4α)1/3z and a = isC

2α
.

Equation (3.6) is also a Painlevé-type ODE (see e.g., [20], p 340, equation XXXIV) which
can be transformed to PII

d2V

dZ2
= 2V 3 + ZV + α

via the transformation 2aW = V ′ + V 2 + Z/2, where the parameter α = −2a − 1/2.

Case 2. Scaling reduction: the form of u(x, t) is given by

u(x, t) = t (−1+iµ)/2q(z) z = xt−1/2 (3.7)

where the constant µ is real. Substituting (3.7) into (3.1) yields the following ODE for q(z):

iq ′′ = zq ′ + q − i(µ + 2s|q|2)q. (3.8)

If one defines q(z) = r(z) exp(iφ(z)) and proceeds in the same way as in the case of
the Galilean boost reduction, then it is possible to eventually obtain a third-order ODE in
the nonlocal variable v(z), where v′(z) = r2(z). The equation for v(z) can be integrated
once to obtain a second-order, second-degree ODE which possesses the Painlevé property and
whose solution can be expressed in terms of the PIV transcendent and its derivatives [26, 27].
Here we do not give the details of this reduction procedure which can be found in the literature
(see e.g. [28, 29]). Instead, we describe a different procedure to obtain the PIV equation more
directly from (3.8) and in terms of a local variable defined in terms of q(z) and its derivative.
From equation (3.8) and its complex conjugate, we construct a first-order system of ODEs

b′ = 2aq b̄′ = −2aq̄ a′ = s(qb̄ − q̄b) (3.9a)

where b = −iq ′ + zq, b̄ is the complex conjugate of b and 2a = i(µ + 2s|q|2). Note that the
above system admits a first integral given by

a2 − s|b|2 = −m2 (3.9b)

where m is a constant. Next we introduce a new variable y ≡ b/q = −iq ′/q + z, which
is local in q(z) and q ′(z) unlike the previously discussed similarity reduction. Then it is a
straightforward calculation by using equations (3.9a), (3.9b) to obtain a second-order ODE
for y(z), namely,

y ′′ = y ′2

2y
− 3y3

2
+ 2zy2 + y(µ + i − z2/2) +

2m2

y
. (3.10)

After the following rescaling of the dependent and independent variables in equation (3.10)

y = βW z = kZ such that 2β = −k k2 = 2i

we obtain equation PIV [20] (p 339, equation XXXI)

d2W

dZ2
= 1

2W

(
dW

dZ

)2

+
3W 3

2
+ 4ZW 2 + 2(Z2 − c)W +

8m2

W
(3.11)

with c = −1 + iµ.



1380 S Chakravarty et al

3.2. Reductions of the CNLS equation

Next we consider the similarity reductions of the CNLS equation

iujt = ujxx

2
+ s(|u1|2 + |u2|2)uj j = 1, 2 (3.12)

for the pair of complex function uj (x, t), where s = 1 and s = −1 are the focusing and
defocussing cases, respectively. As in the previous subsection, we consider the two cases of
Galilean boost and scaling symmetries.

Case 1. Galilean boost: the CNLS fields uj (x, t) and the similarity variable are expressed as

uj (x, t) = rj (z) exp(iφj (z) − iαt(x − αt2/3)) z = x − αt2/2 j = 1, 2 (3.13)

where α > 0 is a constant. Using the form (3.13) in equation (3.12), we obtain a set of coupled
ODEs for the amplitude rj (z) and the phase φj(z) components

rjφ
′′
j + 2r ′

jφ
′
j = 0 (3.14a)

r ′′
j − rjφ

′2
j + 2s

(
r2

1 + r2
2

)
rj − 2αzrj = 0 j = 1, 2. (3.14b)

Once again, equation (3.14a) can be integrated to obtain φ′
j = Cj

/
r2
j where Cj, j = 1, 2 are

constants of integration. Then equation (3.14b) reduces to a coupled non-autonomous system
for the rj given by

r ′′
j = C2

j r
−3
j + 2(αz − sg)rj j = 1, 2 (3.15)

where we have defined g(z) ≡ r2
1 (z) + r2

2 (z).
Equation (3.15) with Cj = 0 can be regarded as a coupled system of PII equations in

the variables r1 and r2. This system was derived in [22] where the authors performed a local
analysis (in the neighbourhood of some initial values) which suggested that (3.15) possesses
the Painlevé property. Here we show that (3.15) does indeed have the Painlevé property for
any choice for the constants Cj since equation (3.15) can be explicitly solved in terms of the
PII transcendent. To that end, we re-express equation (3.15) in terms of the variables yj = r2

j

and differentiate the resulting equation once to arrive at

y ′′′
j = 8y ′

j (αz − sg) + 4yj(α − sg′) j = 1, 2. (3.16)

Now the basic idea is to regard equation (3.16) as a linear, third-order equation for each
component yj (z), with variable coefficients depending on g(z) and g′(z). Thus the solution of
equation (3.15) is completely expressible in terms of the solutions of the linear equation (3.16),
provided the function g(z) is known. An ODE for g(z) can be found readily if we add the two
equations for y1 and y2 in (3.16) and introduce the variable h(z) where h′(z) = g(z) = y1 +y2.
After integrating the resulting equation once, we obtain

h′′′ + 6sh′2 − 8αzh′ + 4αh − β = 0 (3.17)

where β is the constant of integration. We remark at this point that the reduction procedure
outlined thus far can be easily extended to the n-CNLS equation with complex fields
uj , j = 1, 2, . . . , n, n > 2. This is achieved by appropriately generalizing equations (3.12)–
(3.16) for n components and by defining the function g(z) as g(z) ≡ y1 + y2 + · · · + yn.

Equation (3.17) is of Painlevé type and belongs to the third order, polynomial class
of Painlevé-type equations studied by Chazy [26] and later by Bureau [27]. To make the
connection with PII, we note that equation (3.17) admits a first integral which is of second
order and second degree, namely

h′′2 + 4sh′3 − 8αzh′2 + 8αhh′ − 2βh′ = γ
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where γ is an integration constant. Two of the three constants α, β, γ can be absorbed by the
following transformation of variables

σII = sk(h + βk3) Z = z/k k = −(4α)−1/3

in the above equation which then takes the form(
d2σII

dZ2

)2

+ 4

(
dσII

dZ

)3

+ 2Z

(
dσII

dZ

)2

− 2σII

dσII

dZ
− γ̂ = 0 (3.18)

where 16α2γ̂ = γ . The transformation of equation (3.18) into the PII equation was discussed
in [26, 27]. More recently, it was noted in [30] that σII (Z) satisfying equation (3.18), is the
Hamiltonian function for PII, and is also related to the τ -function simply by (ln τII )

′(Z) = σII .
The Hamiltonian formulation for PII is given explicitly as

dq

dZ
= ∂σII

∂p

dp

dZ
= −∂σII

∂q
(3.19)

σII (p, q,Z) = p2

2
+ p

(
q2 +

Z

2

)
+ 2γ̂ 1/2q.

After eliminating p(Z) from the first-order system given by equation (3.19), one obtains PII
for the function q(Z) with the PII parameter given by 1/2 − 2γ̂ 1/2. It is also clear from (3.19)
that p(Z) depends linearly on q ′(Z), so that σII (Z) is a polynomial in q(Z) and q ′(Z) with
a quadratic dependence on q ′(Z). In summary, starting from a solution of PII one constructs
σII (Z) which (after a change of variable) provides a solution h(z) of equation (3.17). It is
then possible to express the amplitude components rj of CNLS, in terms of solutions of the
linear equation (3.16) whose coefficients g(z) = h′(z) and g′(z) = h′′(z) depend on PII and
its derivatives.

Case 2. Scaling reduction: in this case we set

uj (x, t) = t (−1+iµ)/2qj (z) j = 1, 2 z = xt−1/2

in analogy with the scaling reduction of the NLS equation (cf equation (3.7)). Now each
component qj (z) satisfies

iq ′′
j = zq ′

j + qj − i[µ + 2s(|q1|2 + |q2|2)]qj j = 1, 2. (3.20)

Next we introduce the variables

bj = −iq ′
j + zqj j = 1, 2 and 2a = i(µ + 2s(|q1|2 + |q2|2))

which satisfy a system of first-order ODEs

b′
j = 2aqj b′

j = −2aqj a′ = s

2∑
j=1

(qjbj − qjbj ) (3.21)

derived from equation (3.8) and its complex conjugate. The system (3.21) admits a first
integral given by

a2 − s

2∑
j=1

|bj |2 = −m2 (3.22)

m being a constant. We again note that the scaling reduction can also be extended to
the general case of multi-component n-CNLS equation in an obvious manner by setting
j = 1, 2, . . . , n, n > 2 in equations (3.20)–(3.22).

In the following we show how to relate the function a(z) to a solution of PIV. To this end,
we differentiate the equation for a(z) in (3.21) twice, use the remaining equations in (3.21)
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and the first integral in (3.22) to obtain a third-order ODE for a(z). This ODE for a(z) can
be integrated once by introducing the variable f (z) where f ′(z) = a(z). The final result is a
third-order ODE in f (z) given by

f ′′′ = 6if ′2 − z(zf ′ − f ) + 2µf ′ + Cz + 2im2 (3.23)

where C is a constant of integration. The change of variables

σIV = −ik(f − sC) Z = z/k k2 = 2(−s)1/2

in (3.23) leads to the equation for the Hamiltonian function σIV associated with PIV, namely,

d3σIV

dZ3
= −6

(
dσIV

dZ

)2

+ 4Z

(
Z

dσIV

dZ
− σIV

)
+ 4µ(−s)1/2 dσIV

dZ
− 8sm2. (3.24a)

Moreover, there is a first integral of second order and second degree similar to the previous
case of PII reduction (cf equation (3.18)), given by(

d2σIV

dZ2

)2

= 4

(
Z

dσIV

dZ
− σIV

)2

− 4

(
dσIV

dZ
− ν0

)(
dσIV

dZ
− ν1

)(
dσIV

dZ
− ν2

)
(3.24b)

where one of the constants, e.g., ν0 can be set to 0 without loss of generality, then the remaining
parameters are given by ν1 + ν2 = (−s)

1
2 µ, ν1ν2 = 4sm2. Equation (3.24b) appears in [30] as

well. The Hamiltonian formulation for PIV is described via the Poisson bracket relations
dq

dZ
= {q, σIV } dp

dZ
= {p, σIV }

(3.25a)

σIV (q, p,Z) = 2p2

q
− p

(
q + 2Z +

ν1

q

)
+

ν2

2
q

where the fundamental Poisson bracket relation is given by

{p, q} = −{q, p} = q. (3.25b)

After eliminating p(Z) from the first-order system (3.25a), one finds that q(Z) satisfies
PIV. Note also that the PIV Hamiltonian σIV is rational in q(Z), but depends quadratically
on q ′(Z) as in the PII case. Consequently, f (z) in (3.23) and in particular, the quantity
f ′(z) = a(z) = i(µ + 2s(|q1|2 + |q2|2)/2 in the reduced CNLS equation (3.20) are rational
functions of the PIV transcendent and its derivatives. Therefore, equation (3.20) can be
regarded as a second-order linear equation for each qj , with coefficients depending on PIV
transcendent and its derivatives. Solutions of this linear ODE yield the CNLS component
fields qj .

4. Conclusion

In this paper, we have studied systems of ODEs obtained from the dimensional reductions of
the CMB equations by scaling symmetry and of the CNLS equations by Galilean boost and
scaling symmetries. We have derived new exact solutions of these ODEs and discussed their
underlying Hamiltonian structures. The invariant solutions of the CMB equations are obtained
in terms of the third Painlevé transcendent whereas, for the CNLS equations, the solutions
invariant under Galilean boost and scaling are respectively given in terms of the second and
fourth Painlevé transcendents. The obvious extensions of the reduction procedures to the multi-
component n-CMB and n-CNLS equations are also indicated. In particular, for a Maxwell–
Bloch system with probability density function |aj |2 for level |j 〉, j = 1, 2, . . . , n, n � 1,
the ODE satisfied by the quantity |a1|2 + |a2|2 + · · · + |an|2 can be transformed to the general
PIII equation with two arbitrary parameters. For the reduced n-CNLS equations with complex
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fields qj , j = 1, 2, . . . , n, n � 1, the intensity function I = |q1|2 + |q2|2 + · · · + |qn|2 turns
out to be related to the Painlevé transcendents. The ODEs for I obtained from Galilean
boost and scaling symmetries can be transformed respectively to the equations satisfied by
the Hamiltonians σII and σIV associated with PII and PIV. We have also included a review of
the known similarity reductions of the scalar (n = 1) MB and NLS equations to the Painlevé
equations. These results provide a framework for comparison with the corresponding coupled
systems. It is interesting to note that in all cases (considered in this work), the invariant
solutions to the n-CMB and the n-CNLS equations are ultimately given independently of n,
by the same Painlevé equation as the n = 1 case. The only difference is that the Painlevé
equations associated with the n > 1 cases have more free parameters.

We conclude the paper on a slightly speculative note. It is possible to derive each of the
Painlevé equations (PI–PVI) as the compatibility condition of a pair of 2 × 2 linear systems
which arise in the study of isomonodromy deformation problems [30]. These linear systems are
also obtained from the similarity reductions of 2 × 2 Lax pairs associated with equations
solvable by IST (see e.g. [2]). Our study indicates that there are infinitely many linear systems
(n = 1, 2, . . .) which arise from the (n+1)×(n+1) Lax pairs associated with the n-CNLS and
n-CMB equations and whose integrability conditions lead to the PII, PIII and PIV equations.
It is conceivable then that each of the remaining Painlevé equations may also be derived from
the isomonodromic deformations of not one, but a (denumerable) infinite number of linear
systems. We hope to address this issue in future.
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